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M O D E L  F O R  P L A S T I C I T Y  E F F E C T S  IN M E T A L S  

U N D E R  N O N P R O P O R T I O N A L  CYCLIC  L O A D I N G  

I. ]~. Ke l l e r  and P. V. Trusov  UDC 539.374 

A possible physical mechanism for additional hardening is proposed on the basis of an anal- 
ysis of experiments on nonproportional cyclic loading of metals. A model for an elastoplastic 
polycrystal with a hardening law taking into account the interaction of slip systems is devel- 
oped. The effect of additional hardening for elliptic strain paths and the shapes of stress paths 
and hysteresis loops typical of elliptic strain paths are described qualitatively. A violation of 
the assumption of the local determinacy and orientations of stress paths is considered for the 
square strain paths taking place in tests of chromium-nickel austenite stainless steels. 

In t roduc t ion .  In real processes of plastic deformation of metallic polycrystals, any small material 
particle is subjected to complex loading even when components of the boundary forces and displacements 
change proportionally. This is due to the complex geometry of the surface on which the boundary conditions 
are specified and (from a physical point of view) to the presence of internal boundaries separating crystallites 
in the body. The local plastic properties of some widely used metals under nonproportional cyclic loading are 
characterized by a number of effects not found in nonproportional monotonic and proportional cyclic types 
of loadings [1-4]. The difficulties in deriving constitutive elastoplastic relations for complex cyclic loading, 
which are noted by all specialists (see, for example, [5-7]), motivate the necessity of choosing a physically 
justified structure of these relations and the study of the causes and physical mechanism of the phenomenon. 
The paper presents a mathematical model that describes the effect of additional hardening and a number of 
other plasticity effects in nonproportional cyclic loading of macrohomogeneous specimens. 

1. Effect  of Add i t i ona l  Harden ing  in Nonpropor t iona l  Cyclic Loading .  Results of systematic 
experimental studies of the local plastic properties of metals with variation in the shape of cyclic strain paths 
are given in [1-4]. The object of research was a thin-walled tubular specimen subjected to compression- 
tension and alternating torsion ( P - M  experiments [7]). Symmetric periodic actions, shown by phase paths 
in the two-dimensional strain subspace el = e and e2 = ~/V~ (~ is the axial strain and 7 is the torsional 
strain), were delivered to the longitudinal and torsional operating mechanisms. Tanaka et al. [1] studied 
elliptic paths in the subspace of total strains, and Ishikawa and Sasaki [2] studied various closed paths in 
the subspace of plastic strains. In studies of the relationship between the plastic properties and the strain 
path shape, the maximum intensities of cyclic strains e+ were fixed in corresponding series of experiments. 
The tests were performed at room temperature, and the strain rate was varied in the range from 10 -4 to 
10 -3 sec -1. In the initial state, the specimen material was isotropic. 

The experiments showed some new properties of the tested materials in a cyclically stabilized state. 
In particular, for a number of metals, additional hardening was found to depend strongly on the strain path 
shape. For chromium-nickel austenite stainless steel AISI 304 subjected to deformation in the elliptic paths 
[1] el = e+v/'2(1 + ~2)1/2 COS (0 -t-  eft), e2 = e+v~(1 + 62)U2cos (0 - ~), 5 = tan ~ = e_/e+, and 0 = wt with 
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TABLE 1 

Material qy, MPa Crp, MPa O'Np, MPa 

A1 
Ni 
Cu 

SUS 304 

36 
245 
100 
250 

55 
370 
190 
420 

55 
420 
220 
620 

major selniaxis e+ = 0.005 and ratios of the axes d = 0, 0.25, 0.5, 0.75, and 1, the corresponding maximum 
stress intensity in the cycle am were equal to 296, 320, 340, 425, and 460 MPa, respectively. The experiments 
of [2] with steel of the same class AISI 316 deformed in paths of fixed radius e~. = 0.002 and various shapes 
in the plastic strain subspace also showed that  the values of aoo depended on the shape of the cyclic paths: 
300 MPa for proportional paths, 405 for cross-shaped paths, 435 for star-shaped paths, 470 for square paths, 
and 485 MPa for circular paths. Maximum cyclic hardening in both cases was reached for circular strain 
paths. McDowell [6] refers to experiments in which the value of cr~ for a circular path was 75-80% higher 
than that for a proportional path. Itoh et al. [3] studied the tendency toward additional cyclic hardening for a 
number of metals subjected to proportional and nonproportional (in a cross-shaped path) cyclic deformation 
in the total strain subspaee (e+ = 0.004-0.008). Results of the investigation are given in Table 1 (ay is the 
initial yield strength and ap and aNp are the corresponding values of a ~  for deformations in proportional 
and nonproportional cross-shaped paths). 

Other important  characteristics of the loading type considered are a violation [2] of the Lenskii as- 
sumption of local determinacy [7], the peculiar type of elastoplastic hysteresis loops (see, for example, [2]), 
and incomplete cyclic softening in programs including stages of nonproportional and proportional cyclic 
deformation [1]. 

2. P r o b a b l e  P h y s i c a l  M e c h a n i s m  of  t he  Effect .  Analyzing 13 published experimental studies 
for different metals and alloys, we [8] established that all metals and solid solutions that were sensitive to 
the path shape of cyclic strains had a face-centered cubic (FCC) lattice, and the main mechanism of inelastic 
deformation was a crystallographic slip that  allowed only a simple shear by 12 slip systems. A comparison 
of the tendency of metals toward additional hardening at various homologous temperatures (ratio of the 
experiment temperature to the melting point in Kelvin) suggested tha t  this effect is athermal. 

Itoh [3] performed an experimental investigation of the correlation between the measure of additional 
hardening r / =  (axp-  ay)/(ap- az) and the energy of a crystal-lattice defect in a metal or an alloy. The data 
of [31 confirmed our assumption [9] that the measure of additional hardening correlates with the dimensionless 
complex F = 7SF/(Gb), which is the ratio of the energy of the lattice defect 7sF to the averaged shear modulus 
G and Burgers vector magnitude b. With decrease in this parameter,  the value of the measure of additional 
hardening increases: 77 "-- 1/x/'F (the experimental points and regression curves were plotted from the data 
of [3]). At the same time, the parameter ~ - dNp/dp of the sensitivity of a dislocation structure to the path 
shape of cyclic loading shows the dependence # ~ v~ ,  where dp and dNp are the averaged diameters of cells 
of the dislocation structure in proportional and nonproportional cyclic deformation. Decreasing F decreases 
the averaged dimensions of the fragment of the dislocation structure after nonproportional cyclic deformation 
in comparison to those after proportional cyclic deformation. 

In the case of a split dislocation, the dimensionless energy of the lattice defect is inversely proportional 
to the width of the lattice defect normalized to the atomic size. The rather small value of the parameter 
corresponds to widely split dislocations, and this hinders all processes that  require compression of the dis- 
locations, including the processes of destruction of dislocation barriers. For this reason, in metals with a 
small value of F, hardening occurs due to formation of Lomer-Cottrel l  dislocation barriers [10] in the inter- 
action of dislocations belonging to particular pairs of slip systems. In a nonproportional deformation cycle, 
particularly of a form such that the strain tensors and the strain rate tensors are nonproportional at each 
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time (circular and square strain paths), the interaction of particular pairs of slip systems leads to formation 
of the above-mentioned strong dislocation barriers. Thus, a probable mechanism for the effect of additional 
hardening is the formation of strong Lomer-Cottrell dislocation barriers. 

3. Model .  To take into account the proposed hardening mechanism at the lattice level in the 
constitutive equations, we develop the following model. A polycrystalline specimen is imagined as a set of 
elastopldstie single crystals (grains) with certain orientation. It is assumed that the elastic properties of the 
grains are identical and have cubic symmetry, and the plastic properties are anisotropic with an anisotropic 
hardening law ignoring translation. To join the grains in a unit, we assumed that the rate tensor of total 
strains of the specimen is equal to the same tensors of each grain. The stress tensor in the specimen is 
determined as the mean over the grains making up the aggregate with a certain distribution density function 
f(r,), where T, is the initial yield stress of the slip system. All grains are arranged in groups, in each of which 
the initial plastic properties of the grains are identical and their orientations are distributed under a uniform 
law for the initial isotropy of the material. 

For the single crystals making up the aggregate, constitutive elastoplastie relations are formulated that 
take into account the slip mechanism by the slip systems of a FCC crystal and the possibility of different 
isotropic hardening of these systems [the critical shear stresses @ (k = 1 . . . .  ,12) may not be equal]: 

+ k ;  (I) 

F,* = pq(q - 1)A: S; (2) 

Here 

- { 1 for F(S)=~,, dF(S)=O, 

E = j ~ q A : S ,  J =  0 for F(S) <~, or F(S)=~,, dF(S) < 0 .  (3) 

12 S:  Mk q 1 O2F(S) ~-, Mk S: Mk q-2 Mk 
F(S) =-- ~ ~ , d=- q(q_ l) OS 2 = z . . , ~ - ' - - 2 g ' - J  r k ,  (4) 

k--=l  k = l  * ~*  ' * 

Here S is the stress deviator, E and E* a n d / )  are the deviator tensors of small strains and its elastic and 
plastic parts, respectively, and Mk is a symmetric dyad that specifies the kth slip system of a FCC-crystal 
(k = 1 , . . . ,  12) and is also a deviator: 

E = @Mk, (5) 

and q ~> 2 is a parameter that  determines the shape of the yield surface together with the exponent of the 
hyperelastic potential. Defining the constant u, which depends on q, by u = F(v, Mk), we have 24 general 
points of the yield surface F(S) = v and the Bishop-Hill polyhedron that correspond to the cases of a single 
slip. The yield function F(S) allows for the contribution of all normalized stresses S : Mk (k = 1 . . . .  ,12), and 
the corresponding criterion predicts the beginning of yield at the moment the energy of reversible deformations 
(2) reaches a limiting value. The constant q determines the initial shape of the yield surface of the single 
crystal, and p determines the slope of the curve of uniaxial tension of the single crystal along the axis of the 
cube at the moment preceding the beginning of yield. Equations (1)-(4) are derived and analyzed in [11]. 

The rate of plastic shear by the kth slip system @ is obtained from the gradient law in terms of 
normalized stresses and shears by the slip systems: 

OF(S: Mk) = ~q S : Mk S : Mk q--2 2 
@ =- A O(S: Mk) ~ T,k r,k (6) 

[which, combined with (5), leads to (3)]. In (6), summation over k is not performed. 
The hardening law for the kth slip system is adopted in the form 

= , .  + ' (7) 
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where a k is the cyclic-hardening parameter for the kth slip system, which depends on T. k. The first term on 
the right side of (7) is due to internal friction, and the second corresponds to deformation cyclic hardening 
and can be due to the resistance of statistically isotropic dislocation structures. Depending on the history of 
cyclic deformation, a dislocation structure is adjusted to the action, and this results in hardening or softening 
(~..k/> T., however). The expression for the measure c~ k is written as 

t 

a k = / gk(t) exp (-~e (xk(t) - s(t))) ds (t), (S) 

0 

and it takes into account the "forgetting" of local hardening acts (such as transverse hardening upon a sharp 
change in orientation of the strain path), which took place in the experiments of [1]. In (8), t is a deformation 
parameter, ~e is a relaxation factor, 0 ~< s ~ X k, where )C k is the accumulated plastic shear by the kth slip 
system 

t 

Xk(t) = /I~/k(t)l dt, 
i ]  

0 

and gk(t) is a hardening function for the kth slip system, written as 

gk(t) = H[(1 -exp (-~Xk)) + B E h (~%Obkl  I' Jl] - (9) 
j (k)  

The first term in (9) allows for the self-hardening of the slip system in proportional cyclic deformation 
(when the interaction of tile systems is insignificant). The constants H and ~ determine the hardening and 
the rate of hardening, respectively in this process, and the constant B is the hardening due to formation of 
dislocation barriers. The formula for the measure (8) and the function (9) contain plastic shears and their 
rates. Plastic deformations are observed during the part of the cycle where the point representing the stress 
state is on the yield surface. Therefore, the measure ak(T.k) in (7) depends on the yield stress. A hardening 
law similar to (7) is adopted in the model of [12] for a structural element within the framework of a version 
of the statistical Kadashevich-Novozhilov model, which differs, in addition, by the choice of the hardening 
parameter. In [12], the hardening parameter was the work of plastic distortion of the structural element over 
the last cycle, which depends, as well as the measure ak(7.k), on the current yield stress. 

A s tudy of the geometry of the Lomer-Cottrell  reaction [10] shows that  the slip systems of a FCC 
single crystal are arranged in four nonoverlapping groups so that  the barrier forms only in the interaction of 
a pair of slip systems of the same group. The corresponding reaction takes place for a particular combination 
of the signs of the Burgers vectors and directions of dislocation motion (in other words, for appropriate 
configurations of simple shears) of the interacting slip systems. The symmetric dyads of slip systems can 
be oriented so tha t  three such dyads of any group form a closed loop in the space of symmetric deviators. 
Therefore, the criterion for formation of the barriers is written in the above function (9) using the Heaviside 
function h(x); in (9), j (k)  is the index of the group of Lomer-Cottrell slip systems that includes the kth 
system. 

To describe P - M  experiments, we write all relations of the model in terms of the strain subspaces 
el = r and e2 =-- ~'/x/3 (r is the axial strain and 7 is the torsional strain) and the stress subspace 81 : (7 
and s2 = ~'/V~ (a is the axial strain and v is the torsional stress) of the corresponding II'yushin's vector 
spaces E5 and E5 [7]. Below, we consider a simplified (hypothetical) model of a polycrystal in which each 
single crystal has slip systems represented by three unit vectors forming a closed loop in the two-dimensional 
subspace considered. All the results given below were obtained for q -- 2, i.e., the initial shape of the yield 
curve of the single crystals in the subspace sl ,  s2 was circular. The aggregate contained n groups of grains in 
each of which the elements have different orientations but the same initial radius of yield circles. Using the 
method of [13], from the uniaxial tensile curves for stainless steels AISI 304 and AISI 316 in intensities taken 
from [2] and [4], respectively, we determined the initial yield strengths and weights of the grains and the 
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TABLE 2 

elastic moduli of the materials. In this version of the model, the initial yield strengths of the grains coincide 
with v., and (3) takes the form D = 3G~. Table 2 gives the values of ~-. (in megapascals) and f for AISI 304 
(n = 11 and 3G = 245.4 GPa) and AISI 316 (n = 10 and 3G = 199.2 GPa). The remaining parameters for 
both materials (similar in plastic properties) a~ = 50, ~ = 2 �9 104, H = 2 �9 109 Pa, and B = 1.4- 106 were 
selected so as to describe the effect of additional hardening on elliptic paths of cyclic deformation. 

4. R e s u l t s  a n d  Discuss ion  Figure 1 gives the cyclic hardening Is]~ of steel AISI 304 deformed 
in elliptic paths that  are equally sloped to the el and e2 axes, with the unchanged major semiaxis e+ = 
0.005 versus the ratio of the semiaxes of the ellipse (f calculated using the model. The diamonds show the 
experimental data  of [1] and the crosses show the calculation results. It follows from Fig. 1 that  the hardening 
function (9) and the "forgetting" measure (8) allow one to describe the inflection point on the experimental 
curve. The calculation of this curve is stable with respect to small changes in the parameters of the material q, 
~e, ~, H, and B. 

Figure 2 shows calculated curves of elastoplastic hysteresis (Fig. 28 and b) and the stress path (Fig. 2c) 
for the same elliptic path of cyclic deformation with 6 = 0.25 of steel AISI 304. The curves in Fig. 2a and 
b, calculated using the proposed model, have the following features: one of the hysteresis loops (Fig. 28) has 
a rounded shape and descending segments and the other (Fig. 2b) has a sharp shape and concave segments. 
The loops obtained experimentally under similar conditions [2] have the same typical shapes. Even in the 
first studies of nonproportional cyclic plasticity, it was noted that  the hysteresis loops for this type of loading 
differed qualitatively in shape from the loops in proportional cyclic deformation. It is known that  the 
shape and dimensions of the hysteresis loops characterize the amount  of energy absorbed by the material 
during cyclic deformation, and part  of the energy is accumulated as the internal (elastic) energy of the 
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dislocation structure. A theoretical description of the shape and dimensions of hysteresis loops as functions 
of the properties of the material and the cyclic deformation path is impor tant  in studies of low-cycle fatigue. 
Figure 2c shows the stress path, which is in good qualitative agreement with the experimental curve of [2]. 

Figure 3 gives calculated curves of the angle of approach ft of the stress vectors and the strain rate 
vectors after the inflection point versus the length of the arc of the pa th  of total strains s for the cyclic 
deformation of steel AISI 316 in square paths. Diamonds, crosses, and squares show the results obtained for 
squares 0.002, 0.004, and 0.008 on a side, respectively. The difference between the curves corresponds to a 
violation of the assumption of local determinacy [7] since the length of the side of the square is not among 
the local parameters of the process. This distinguishing feature of cyclic nonproportional plasticity was noted 
for the first time in [4], where similar experimental dependences are given. 

Figure 4 gives stress paths that  correspond to the cyclic deformation of steel AISI 316 in square paths 
(see Fig. 3) with squares 0.002, 0.004, 0.008, and 0.012 on a side. The experimental data of [4] show that  the 
symmetry axes of the stress paths are rotated about the symmetry axes of the square strain path. The angle 
of rotation of the symmetry  axes increases with increase in the length of the side of the square strain path. 
The calculated paths (Fig. 4) have the same peculiarity. This indicates tha t  the model provides a qualitative 
description of the vectorial and scalar properties of the material [7] tha t  are jointly responsible for the effect. 

Although the model describes a number of peculiarities of nonproportional cyclic plasticity, the question 
of whether it is adequate for describing the dependence of cyclic hardening on the strain path shape (paths 
having the shape of crosses, stars, butterflies, etc. [1]) is still open. Calculation results for such paths are 
not given here because in the experiments of [1] plastic deformations were studied, whereas the proposed 
algorithm of implementation of the model is intended for total deformations, and it is not quite correct to 
compare these results. 

The problem of the incomplete "forgetting" of the cyclic deformat ion history (including incomplete 
cyclic softening), which is also typical of nonproportional cyclic deformation [1], remains to be solved. 

In conclusion, we emphasize the importance of a comparison between various approaches to deriving 
constitutive equations for complex cyclic loading, including the approach described in the present paper. 
Almost all existing models of the phenomenon considered are based on modifications of the two-surface 
theories of plastic yield in terms of the stress space and/or  strain space (see [6, 14]) or the endochronous 
theory of plasticity [15]. It may be useful to reject the macrodeterminacy hypothesis and to describe the 
macroproperties of materials in correlation with the structures developing in it. 

This work was supported by the Russian Foundation for Fundamenta l  Research (Grant No. 98-01- 
00125). 
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